Like any site, there are a select amount of available character races to choose from - so you can not be a wild vampire/werewolf running around slaughtering people and devouring their skin to live. You may find the available races below, as listed with detail.
Humans:Humans are bipedal primates belonging to the species Homo sapiens (Latin: "wise man" or "knowing man") in Hominidae, the great ape family.[2][3] They are the only surviving members of the genus Homo. Humans have a highly developed brain, capable of abstract reasoning, language, introspection, and problem solving. This mental capability, combined with an erect body carriage that frees the arms for manipulating objects, has allowed humans to make far greater use of tools than any other species. Mitochondrial DNA and fossil evidence indicates that modern humans originated in Africa about 200,000 years ago.[4] Humans are widespread in every continent except Antarctica, with a total population of 6.8 billion as of November 2009.[5]
Like most higher primates, humans are social by nature. However, humans are uniquely adept at utilizing systems of communication for self-expression, the exchange of ideas, and organization. Humans create complex social structures composed of many cooperating and competing groups, from families to nations. Social interactions between humans have established an extremely wide variety of values, social norms, and rituals, which together form the basis of human society. Humans have a marked appreciation for beauty and aesthetics which, combined with the human desire for self-expression, has led to cultural innovations such as art, literature and music.
Humans are noted for their desire to understand and influence their environment, seeking to explain and manipulate natural phenomena through science, philosophy, mythology and religion. This natural curiosity has led to the development of advanced tools and skills, which are passed down culturally; humans are the only species known to build fires, cook their food, clothe themselves, and use numerous other technologies.
Until c. 10,000 years ago, most humans lived as hunter-gatherers. They generally lived in small nomadic groups known as band societies. The advent of agriculture prompted the Neolithic Revolution, when access to food surplus led to the formation of permanent human settlements, the domestication of animals and the use of metal tools. Agriculture encouraged trade and cooperation, and led to complex society. Because of the significance of this date for human society, it is the epoch of the Holocene calendar or Human Era.
About 6,000 years ago, the first proto-states developed in Mesopotamia, Egypt's Nile Valley and the Indus Valleys. Military forces were formed for protection, and government bureaucracies for administration. States cooperated and competed for resources, in some cases waging wars. Around 2,000–3,000 years ago, some states, such as Persia, India, China, Rome, and Greece, developed through conquest into the first expansive empires. Influential religions, such as Judaism, originating in the Middle East, and Hinduism, a religious tradition that originated in South Asia, also rose to prominence at this time.
The late Middle Ages saw the rise of revolutionary ideas and technologies. In China, an advanced and urbanized society promoted innovations and sciences, such as printing and seed drilling. In India, major advancements were made in mathematics, philosophy, religion and metallurgy. The Islamic Golden Age saw major scientific advancements in Muslim empires. In Europe, the rediscovery of classical learning and inventions such as the printing press led to the Renaissance in the 15th and 16th centuries. Over the next 500 years, exploration and colonialism brought much of the Americas, Asia, and Africa under European control, leading to later struggles for independence. The Scientific Revolution in the 17th century and the Industrial Revolution in the 18th–19th centuries promoted major innovations in transport, such as the railway and automobile; energy development, such as coal and electricity; and government, such as representative democracy and Communism.
With the advent of the Information Age at the end of the 20th century, modern humans live in a world that has become increasingly globalized and interconnected. As of 2008, over 1.4 billion humans are connected to each other via the Internet,[32] and 3.3 billion by mobile phone subscriptions.[33]
Although interconnection between humans has encouraged the growth of science, art, discussion, and technology, it has also led to culture clashes and the development and use of weapons of mass destruction. Human civilization has led to environmental destruction and pollution, producing an ongoing mass extinction of other forms of life called the holocene extinction event, that may be further accelerated by global warming in the future.
Early human settlements were dependent on proximity to water and, depending on the lifestyle, other natural resources, such as arable land for growing crops and grazing livestock, or seasonally by hunting populations of prey. However, humans have a great capacity for altering their habitats by various methods, such as through irrigation, urban planning, construction, transport, manufacturing goods, deforestation and desertification. With the advent of large-scale trade and transport infrastructure, proximity to these resources has become unnecessary, and in many places, these factors are no longer a driving force behind the growth and decline of a population. Nonetheless, the manner in which a habitat is altered is often a major determinant in population change.
Technology has allowed humans to colonize all of the continents and adapt to virtually all climates. Within the last century, humans have explored Antarctica, the ocean depths, and outer space, although large-scale colonization of these environments is not yet feasible. With a population of over six billion, humans are among the most numerous of the large mammals. Most humans (61%) live in Asia. The remainder live in the Americas (14%), Africa (14%), Europe (11%), and Oceania (0.5%).
Human habitation within closed ecological systems in hostile environments, such as Antarctica and outer space, is expensive, typically limited in duration, and restricted to scientific, military, or industrial expeditions. Life in space has been very sporadic, with no more than thirteen humans in space at any given time. Between 1969 and 1972, two humans at a time spent brief intervals on the Moon. As of January 2010, no other celestial body has been visited by humans, although there has been a continuous human presence in space since the launch of the initial crew to inhabit the International Space Station on October 31, 2000. However, other celestial bodies have been visited by human-made objects.
Since 1800, the human population has increased from one billion to over six billion. In 2004, some 2.5 billion out of 6.3 billion people (39.7%) lived in urban areas, and this percentage is expected to continue to rise throughout the 21st century. In February 2008, the U.N. estimated that half the world's population will live in urban areas by the end of the year. Problems for humans living in cities include various forms of pollution and crime, especially in inner city and suburban slums. Benefits of urban living include increased literacy, access to the global canon of human knowledge and decreased susceptibility to rural famines.
Humans have had a dramatic effect on the environment. As humans are rarely preyed upon, they have been described as super predators. Currently, through land development, combustion of fossil fuels and pollution, humans are thought to be the main contributor to global climate change. Human activity is believed to be a major contributor to the ongoing Holocene extinction event, which is a form of mass extinction. If this continues at its current rate it is predicted that it will wipe out half of all species over the next century. Although humans started off as an extremely primitive race, they have far surpassed former predictions of their extent to scientific exploration. Extending their reach past the Earth's atmosphere, even to recent settlements made on the orbiting moon, humans currently hold dominance over the planet of Terra.
Different Races of Humans:
- Caucasion (White)
- African (Black)
- Asian
- Latino (Hispanic)
- European White
- Indian
- Native American
- Mixed (Specify)
Elementals:Elementals are an artificial species that have developed from normal human beings. After the greatest of Intelligence Agencies throughout the world gathered to form a meta-human, they all put forth as much research and development into this project as possible. After being put through a lot of testing and experiments, the Elementals were formed - most being resented by the human race; some being driven into joining the dominion to conquer the world. The different forms and types of Elementals can be seen below:
Primary:FireFire is the rapid oxidation of a combustible material(and or substance) releasing heat, light, and various reaction products such as carbon dioxide and water. If hot enough, the gases may become ionized to produce plasma. Depending on the substances alight, and any impurities outside, the color of the flame and the fire's intensity might vary. Fire in its most common form can result in conflagration, which has the potential to cause physical damage through burning.
Fires start when a flammable and/or a combustible material, in combination with sufficient quantity of an oxidizer such as oxygen gas or another oxygen-rich compound (though non-oxygen oxidizers exist that can replace oxygen), is exposed to a source of heat or ambient temperature above the flash point for the fuel/oxidizer mix, and is able to sustain a rate of rapid oxidation that produces a chain reaction. This is commonly called the fire tetrahedron. Fire cannot exist without all of these elements in place and in the right proportions (though as previously stated, another strong oxidizer can replace oxygen). For example, a flammable liquid will start burning only if the fuel and oxygen are in the right proportions. Some fuel-oxygen mixes may require a catalyst, a substance that is not directly involved in any chemical reaction during combustion, but which enables the reactants to combust more readily.
Once ignited, a chain reaction must take place whereby fires can sustain their own heat by the further release of heat energy in the process of combustion and may propagate, provided there is a continuous supply of an oxidizer and fuel.
Fire can be extinguished by removing any one of the elements of the fire tetrahedron. Consider a natural gas flame, such as from a stovetop burner. The fire can be extinguished by any of the following:
* turning off the gas supply, which removes the fuel source;
* covering the flame completely, which smothers the flame as the combustion both uses the available oxidizer (the oxygen in the air) and displaces it from the area around the flame with CO2;
* application of water, which removes heat from the fire faster than the fire can produce it (similarly, blowing hard on a flame will displace the heat of the currently-burning gas from its fuel source, to the same end), or
* application of a retardant chemical such as Halon to the flame, which retards the chemical reaction itself until the rate of combustion is too slow to maintain the chain reaction.
In contrast, fire is intensified by increasing the overall rate of combustion. Methods to do this include balancing the input of fuel and oxidizer to stoichiometric proportions, increasing fuel and oxidizer input in this balanced mix, increasing the ambient temperature so the fire's own heat is better able to sustain combustion, or providing a catalyst; a non-reactant medium in which the fuel and oxidizer can more readily react.
Fire Elementals are most commonly depicted as destructive but life-giving elementals, as they were created to be such, and wielded by characters with an aggressive disposition and a warm and passionate personality - having been influenced by the powerful amount of high fire ionic energy that was introduced to their nervous system. Environments with an affinity to fire tend to be hot, hostile and dangerous. Fire is invariably opposed by water, but a powerful enough burst or 'spurt' of fire can sometimes overcome and evaporate water at the touch. Fire is commonly accompanied by 'Heat' as well as 'Plasma', which can sometimes prove fatal to a human foe.
WaterWater is a ubiquitous chemical substance that is composed of hydrogen and oxygen and is vital for all known forms of life. In typical usage, water refers only to its liquid form or state, but the substance also has a solid state, ice, and a gaseous state, water vapor or steam. Water covers 71% of the Earth's surface. On Earth, it is found mostly in oceans and other large water bodies, with 1.6% of water below ground in aquifers and 0.001% in the air as vapor, clouds (formed of solid and liquid water particles suspended in air), and precipitation. Oceans hold 97% of surface water, glaciers and polar ice caps 2.4%, and other land surface water such as rivers, lakes and ponds 0.6%. A very small amount of the Earth's water is contained within biological bodies and manufactured products. Water on Earth moves continually through a cycle of evaporation or transpiration (evapotranspiration), precipitation, and runoff, usually reaching the sea. Over land, evaporation and transpiration contribute to the precipitation over land.
Clean, fresh drinking water is essential to human and other lifeforms. Access to safe drinking water has improved steadily and substantially over the last decades in almost every part of the world. There is a clear correlation between access to safe water and GDP per capita. However, some observers have estimated that by 2025 more than half of the world population will be facing water-based vulnerability. A recent report (November 2009) suggests that by 2030, in some developing regions of the world, water demand will exceed supply by 50%. Water plays an important role in the world economy, as it functions as a solvent for a wide variety of chemical substances and facilitates industrial cooling and transportation. Approximately 70% of freshwater is consumed by agriculture.
Water is the chemical substance with chemical formula H2O: one molecule of water has two hydrogen atoms covalently bonded to a single oxygen atom.
Water appears in nature in all three common states of matter and may take many different forms on Earth: water vapor and clouds in the sky; seawater and icebergs in the polar oceans; glaciers and rivers in the mountains; and the liquid in aquifers in the ground.
The major chemical and physical properties of water are:
* Water is a tasteless, odorless liquid at standard temperature and pressure. The color of water and ice is, intrinsically, a very light blue hue, although water appears colorless in small quantities. Ice also appears colorless, and water vapor is essentially invisible as a gas.
* Water is transparent, and thus aquatic plants can live within the water because sunlight can reach them. Only strong UV light is slightly absorbed.
* Since the water molecule is not linear and the oxygen atom has a higher electronegativity than hydrogen atoms, it carries a slight negative charge, whereas the hydrogen atoms are slightly positive. As a result, water is a polar molecule with an electrical dipole moment. The net interactions between the dipoles on each molecule cause an effective skin effect at the interface of water with other substances, or air at the surface, the latter given rise to water's high surface tension. This dipolar nature contributes to water molecules' tendency to form hydrogen bonds which cause water's many special properties. The polar nature also favors adhesion to other materials.
* Each hydrogen nucleus is bound to the central oxygen atom by a pair of electrons that are shared between them; chemists call this shared electron pair a covalent chemical bond. In H2O, only two of the six outer-shell electrons of oxygen are used for this purpose, leaving four electrons which are organized into two non-bonding pairs. The four electron pairs surrounding the oxygen tend to arrange themselves as far from each other as possible in order to minimize repulsions between these clouds of negative charge. This would ordinarily result in a tetrahedral geometry in which the angle between electron pairs (and therefore the H-O-H bond angle) is 109.5°. However, because the two non-bonding pairs remain closer to the oxygen atom, these exert a stronger repulsion against the two covalent bonding pairs, effectively pushing the two hydrogen atoms closer together. The result is a distorted tetrahedral arrangement in which the H-O-H angle is 104.5°.
* A result of interplay of these properties, Capillary action refers to the tendency of water to move up a narrow tube against the force of gravity. This property is relied upon by all vascular plants, such as trees.
* Water is a good solvent and is often referred to as the universal solvent. Substances that dissolve in water, e.g., salts, sugars, acids, alkalis, and some gases – especially oxygen, carbon dioxide (carbonation) are known as hydrophilic (water-loving) substances, while those that do not mix well with water (e.g., fats and oils), are known as hydrophobic (water-fearing) substances.
* All the major components in cells (proteins, DNA and polysaccharides) are also dissolved in water.
* Pure water has a low electrical conductivity, but this increases significantly with the dissolution of a small amount of ionic material such as sodium chloride.
* The boiling point of water (and all other liquids) is dependent on the barometric pressure. For example, on the top of Mt. Everest water boils at about 68 °C (154 °F), compared to 100 °C (212 °F) at sea level. Conversely, water deep in the ocean near geothermal vents can reach temperatures of hundreds of degrees and remain liquid.
* Water has the second highest specific heat capacity of any known substance, after ammonia, as well as a high heat of vaporization (40.65 kJ·mol−1), both of which are a result of the extensive hydrogen bonding between its molecules. These two unusual properties allow water to moderate Earth's climate by buffering large fluctuations in temperature.
* The maximum density of water occurs at 3.98 °C (39.16 °F).[13] Water becomes even less dense upon freezing, expanding 9%. This results in an unusual phenomenon: water's solid form, ice, floats upon water, allowing organisms to survive inside a partially-frozen water body because the water on the bottom has a temperature of around 4 °C (39 °F).
ADR label for transporting goods dangerously reactive with water
* Water is miscible with many liquids, such as ethanol, in all proportions, forming a single homogeneous liquid. On the other hand, water and most oils are immiscible usually forming layers according to increasing density from the top. As a gas, water vapor is completely miscible with air.
* Water forms an azeotrope with many other solvents.
* Water can be split by electrolysis into hydrogen and oxygen.
* As an oxide of hydrogen, water is formed when hydrogen or hydrogen-containing compounds burn or react with oxygen or oxygen-containing compounds. Water is not a fuel, it is an end-product of the combustion of hydrogen. The energy required to split water into hydrogen and oxygen by electrolysis or any other means is greater than the energy released when the hydrogen and oxygen recombine.[14]
* Elements which are more electropositive than hydrogen such as lithium, sodium, calcium, potassium and caesium displace hydrogen from water, forming hydroxides. Being a flammable gas, the hydrogen given off is dangerous and the reaction of water with the more electropositive of these elements may be violently explosive.
Water Elements are often depicted as a restorative elemental, due to water's real-life importance in sustaining life. Characters with an affinity to water are often peaceful, although many have shown a propensity for violence when provoked. Water environments tend to be serene and abundant with life. Water is opposed by air, but is sometimes able to even penetrate the strongest gusts of winds. The sub-element that often accompanies an elementals arsenal of skills is 'Ice' as well as 'Mist'.
EarthWilderness is generally defined as a natural environment on Earth that has not been significantly modified by human activity. The WILD Foundation goes into more detail, defining wilderness as: "The most intact, undisturbed wild natural areas left on our planet - those last truly wild places that humans do not control and have not developed with roads, pipelines or other industrial infrastructure." Wilderness areas and protected parks are considered important for the survival of certain species, ecological studies, conservation, solitude, and recreation. Wilderness is deeply valued for cultural, spiritual, moral, and aesthetic reasons. Some nature writers believe wilderness areas are vital for the human spirit and creativity.[43] Ecologists consider wilderness areas to be an integral part of the planet's self-sustaining natural ecosystem (the biosphere).
Wilderness areas can be found in preserves, estates, farms, conservation preserves, ranches, National Forests, National Parks and even in urban areas along rivers, gulches or otherwise undeveloped areas. These areas are considered important for the survival of certain species, biodiversity, ecological studies, conservation, solitude, and recreation. Wilderness is deeply valued for cultural, spiritual, moral, and aesthetic reasons. Some nature writers believe wilderness areas are vital for the human spirit and creativity.[43] They may also preserve historic genetic traits and that they provide habitat for wild flora and fauna that may be difficult to recreate in zoos, arboretums or laboratories.
A mineral is a naturally occurring solid formed through geological processes that has a characteristic chemical composition, a highly ordered atomic structure, and specific physical properties. A rock, by comparison, is an aggregate of minerals and/or mineraloids, and need not have a specific chemical composition. Minerals range in composition from pure elements and simple salts to very complex silicates with thousands of known forms.[1] The study of minerals is called mineralogy.
To be classified as a true mineral, a substance must be a solid and have a crystalline structure. It must also be a naturally occurring, homogeneous substance with a defined chemical composition. Traditional definitions excluded organically derived material. However, the International Mineralogical Association in 1995 adopted a new definition:
a mineral is an element or chemical compound that is normally crystalline and that has been formed as a result of geological processes.
The modern classifications include an organic class – in both the new Dana and the Strunz classification schemes.[3][4]
The chemical composition may vary between end members of a mineral system. For example the plagioclase feldspars comprise a continuous series from sodium and silicon-rich albite (NaAlSi3O8) to calcium and aluminum-rich anorthite (CaAl2Si2O8) with four recognized intermediate compositions between. Mineral-like substances that don't strictly meet the definition are sometimes classified as mineraloids. Other natural-occurring substances are nonminerals. Industrial minerals is a market term and refers to commercially valuable mined materials (see also Minerals and Rocks section below).
A crystal structure is the orderly geometric spatial arrangement of atoms in the internal structure of a mineral. There are 14 basic crystal lattice arrangements of atoms in three dimensions, and these are referred to as the 14 "Bravais lattices". Each of these lattices can be classified into one of the seven crystal systems, and all crystal structures currently recognized fit in one Bravais lattice and one crystal system. This crystal structure is based on regular internal atomic or ionic arrangement that is often expressed in the geometric form that the crystal takes. Even when the mineral grains are too small to see or are irregularly shaped, the underlying crystal structure is always periodic and can be determined by X-ray diffraction. Chemistry and crystal structure together define a mineral. In fact, two or more minerals may have the same chemical composition, but differ in crystal structure (these are known as polymorphs). For example, pyrite and marcasite are both iron sulfide, but their arrangement of atoms differs. Similarly, some minerals have different chemical compositions, but the same crystal structure: for example, halite (made from sodium and chlorine), galena (made from lead and sulfur) and periclase (made from magnesium and oxygen) all share the same cubic crystal structure.
Crystal structure greatly influences a mineral's physical properties. For example, though diamond and graphite have the same composition (both are pure carbon), graphite is very soft, while diamond is the hardest of all known minerals. This happens because the carbon atoms in graphite are arranged into sheets which can slide easily past each other, while the carbon atoms in diamond form a strong, interlocking three-dimensional network.
There are currently more than 4,000 known minerals, according to the International Mineralogical Association, which is responsible for the approval of and naming of new mineral species found in nature. Of these, perhaps 100 can be called "common", 50 are "occasional", and the rest are "rare" to "extremely rare". Without more recycling, zinc could be used up by 2037, both indium and hafnium could run out by 2017, and terbium could be gone before 2012.
Earth Elementals are often depicted as an elemental of stability, and the element of earth, which earth elementals utilize, is often wielded by characters who are physically strong or imposing. Characters aligned with this element can have tendencies toward either passive or aggressive behavior. Its environment can be either barren with soil or with abundance in life. Earth is naturally opposed by fire, but can sometimes overcome fire's destructive power. Earth includes any of the following sub-elements, ranging from 'Wood' and even to 'Plant life'. (Just not metal, metallic, or metalloid materials).
Wind/AirWind is the flow of gases on a large scale. On Earth, wind consists of the bulk movement of air. In outer space, solar wind is the movement of gases or charged particles from the sun through space, while planetary wind is the outgassing of light chemical elements from a planet's atmosphere into space. Winds are commonly classified by their spatial scale, their speed, the types of forces that cause them, the regions in which they occur, and their effect. The strongest observed winds on a planet in our solar system occur on Neptune and Saturn.
In meteorology, winds are often referred to according to their strength, and the direction the wind is blowing from. Short bursts of high speed wind are termed gusts. Strong winds of intermediate duration (around one minute) are termed squalls. Long-duration winds have various names associated with their average strength, such as breeze, gale, storm, hurricane, and typhoon. Wind occurs on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heating of land surfaces and lasting a few hours, to global winds resulting from the difference in absorption of solar energy between the climate zones on Earth. The two main causes of large scale atmospheric circulation are the differential heating between the equator and the poles, and the rotation of the planet (Coriolis effect). Within the tropics, thermal low circulations over terrain and high plateaus can drive monsoon circulations. In coastal areas the sea breeze/land breeze cycle can define local winds; in areas that have variable terrain, mountain and valley breezes can dominate local winds.
In human civilization, wind has inspired mythology, influenced the events of history, expanded the range of transport and warfare, and provided a power source for mechanical work, electricity, and recreation. Wind has powered the voyages of sailing ships across Earth's oceans. Hot air balloons use the wind to take short trips, and powered flight uses it to increase lift and reduce fuel consumption. Areas of wind shear caused by various weather phenomena can lead to dangerous situations for aircraft. When winds become strong, trees and man-made structures are damaged or destroyed.
Winds can shape landforms, via a variety of aeolian processes such as the formation of fertile soils, such as loess, and by erosion. Dust from large deserts can be moved great distances from its source region by the prevailing winds; winds that are accelerated by rough topography and associated with dust outbreaks have been assigned regional names in various parts of the world because of their significant effects on those regions. Wind effects the spread of wildfires. Winds disperse seeds from various plants, enabling the survival and dispersal of those plant species, as well as flying insect populations. When combined with cold temperatures, wind has a negative impact on livestock. Wind affects animals' food stores, as well as their hunting and defensive strategies.
Flight is the process by which an object moves either through the air, or movement beyond earth's atmosphere (as in the case of spaceflight), by generating lift, propulsive thrust or aerostatically using buoyancy, or by simple ballistic movement.
Air (also referred to as wind) elementals are depicted as elementals of freedom and caprice, and their element of wind is often wielded by carefree or whimsical characters. Characters aligned with this element tend to emphasize speed over strength. Environments which have an affinity to air tend to be at high elevations or actually suspended in the air. The sub-element that often accompanies the primary element of Wind is 'Flight' or 'Gliding'.
LightningElectricity (from the New Latin ēlectricus, "amber-like"[a]) is a general term that encompasses a variety of phenomena resulting from the presence and flow of electric charge. These include many easily recognizable phenomena, such as lightning and static electricity, but in addition, less familiar concepts, such as the electromagnetic field and electromagnetic induction.
In general usage, the word "electricity" is adequate to refer to a number of physical effects. In scientific usage, however, the term is vague, and these related, but distinct, concepts are better identified by more precise terms:
* Electric charge – a property of some subatomic particles, which determines their electromagnetic interactions. Electrically charged matter is influenced by, and produces, electromagnetic fields.
* Electric current – a movement or flow of electrically charged particles, typically measured in amperes.
* Electric field – an influence produced by an electric charge on other charges in its vicinity.
* Electric potential – the capacity of an electric field to do work on an electric charge, typically measured in volts.
* Electromagnetism – a fundamental interaction between the magnetic field and the presence and motion of an electric charge.
Electrical phenomena have been studied since antiquity, though advances in the science were not made until the seventeenth and eighteenth centuries. Practical applications for electricity however remained few, and it would not be until the late nineteenth century that engineers were able to put it to industrial and residential use. The rapid expansion in electrical technology at this time transformed industry and society. Electricity's extraordinary versatility as a source of energy means it can be put to an almost limitless set of applications which include transport, heating, lighting, communications, and computation. The backbone of modern industrial society is, and for the foreseeable future can be expected to remain, the use of electrical power.[1]
Static electricity refers to the build up of electric charge on the surface of objects. The static charges remain on an object until they either bleed off to ground or are quickly neutralized by a discharge. Although charge exchange can happen whenever any two surfaces come into contact and separate, a static charge will only remain when at least one of the surfaces has a high resistance to electrical flow (an electrical insulator). The effects of static electricity are familiar to most people because we can see, feel and even hear the spark as the excess charge is neutralized when brought close to a large electrical conductor (for example a path to ground), or a region with an excess charge of the opposite polarity (positive or negative). The familiar phenomenon of a static 'shock' is caused by the neutralization of charge.
The materials we observe and interact with from day to day are formed from atoms and molecules that are electrically neutral, having an equal number of positive charges (protons, in the nucleus) and negative charges (electrons, in shells surrounding the nucleus). The phenomenon of static electricity requires a separation of positive and negative charges.
Contact-induced charge separation
Main article: Triboelectric effect
Electrons can be exchanged between materials on contact; materials with weakly bound electrons tend to lose them, while materials with sparsely filled outer shells tend to gain them. This is known as the triboelectric effect and results in one material becoming positively charged and the other negatively charged. The polarity and strength of the charge on a material once they are separated depends on their relative positions in the triboelectric series. The triboelectric effect is the main cause of static electricity as observed in everyday life, and in common high-school science demonstrations involving rubbing different materials together (e.g. fur and an acrylic rod). Contact-induced charge separation causes your hair to stand up and causes static cling (a balloon rubbing on your hair becomes statically charged and becomes negative, and when it is near a wall it attracts to the positively charged particles in the wall).
Pressure-induced charge separation
Main article: Piezoelectric effect
Applied mechanical stress generates a separation of charge in certain types of crystals and ceramics molecules.
Heat-induced charge separation
Main article: Pyroelectric effect
Heating generates a separation of charge in the atoms or molecules of certain materials. All pyroelectric materials are also piezoelectric. The atomic or molecular properties of heat and pressure response are closely related.
Charge-induced charge separation
Main article: Electrostatic induction
A charged object brought into the vicinity of an electrically neutral object will cause a separation of charge within the conductor. Charges of the same polarity are repelled and charges of the opposite polarity are attracted. As the force due to the interaction of electric charges falls off rapidly with increasing distance, the effect of the closer (opposite polarity) charges is greater and the two objects feel a force of attraction. The effect is most pronounced when the neutral object is an electrical conductor as the charges are more free to move around.
Careful grounding of part of an object with a charge-induced charge separation can permanently add or remove electrons,leaving the object with a global,permanent charge. This process is integral to the workings of the Van de Graaf Generator, a device commonly used to demonstrate the effects of static electricity.
The fifth form of elemental, the Lightning Elemental, tends to utilize a more abstract element than the other four elements in that it has no clear physical manifestation. It can be depicted simply as pure energy or electricity. Lightning also includes static electricity as well as other forms of electricity.
ShadowA shadow is an area where direct light from a light source cannot reach due to obstruction by an object. It occupies all of the space behind an opaque object with light in front of it. The cross section of a shadow is a two-dimensional silhouette, or reverse projection of the object blocking the light. An astronomical object casts human-visible shadows when its apparent magnitude is equal or lower than -4. Currently the only astronomical objects able to produce visible shadows on Earth are the Sun, the Moon and, in the right conditions, the planets of Mercury and Venus.
Shadow lengths change dramatically throughout the day. The length of a shadow cast on the ground is proportional to the cotangent of the sun's elevation angle – its angle θ relative to the horizon. Near sunrise and sunset, when θ=0° and cot(θ) is infinite, shadows can be extremely long. If the sun passes directly overhead, then θ = 90°, cot(θ)=0, and shadows are cast directly underneath objects.
For a non-point source of light, the shadow is divided into the umbra and penumbra. The wider the light source, the more blurred the shadow. If there are multiple light sources there are multiple shadows, with overlapping parts darker, or a combination of colors. For a person or object touching the surface, like a person standing on the ground, or a pole in the ground, these converge at the point of touch.
The farther the distance from the object blocking the light to the surface of projection, the larger the silhouette (they are considered proportional). Also, if the object is moving, the shadow cast by the object will project an image with dimensions (length) expanding proportionally faster than the object's own length of movement. The increase of size and movement is also true if the distance between the object of interference and the light source are closer. This, however, does not mean the shadow may move faster than light, even when projected at vast distances, such as light years. The loss of light, which projects the shadow, will move towards the surface of projection at light speed.
The projected shadow may appear to have moved faster than the speed of light, but there is no actual physical manifestation moving upon the surface. The misconception is that the edge of a shadow "moves" along a wall, when in actuality the increase of a shadow's length is part of a new projection, which will propagate at the speed of light from the object of interference.
Since there is no actual communication between points in a shadow (except for reflection or interference of light, at the speed of light), a shadow that projects over a surface of large distances (light years) cannot give information between those distances with the shadow's edge. Shadow Elementals are able to utilize their own shadows, as well as the shadows of objects, to solidify the shadow into a 3-D form, using it as a form of weaponry or shield.
LightFour primary properties of light are:
* Intensity
* Frequency or wavelength
* Polarization
* Phase
Light, which exists in tiny "packets" called photons, exhibits properties of both waves and particles. This property is referred to as the wave–particle duality. The study of light, known as optics, is an important research area in modern physics.
The speed of light in a vacuum is presently defined to be exactly 299,792,458 m/s (approximately 186,282 miles per second). This definition of the speed of light means that the metre is now defined in terms of the speed of light. Light always travels at a constant speed, even between particles of a substance through which it is shining. Photons excite the adjoining particles that in turn transfer the energy to the neighbor. This may appear to slow the beam down through its trajectory in realtime. The time lost between entry and exit accounts to the displacement of energy through the substance between each particle that is excited.
Different physicists have attempted to measure the speed of light throughout history. Galileo attempted to measure the speed of light in the seventeenth century. An early experiment to measure the speed of light was conducted by Ole Rømer, a Danish physicist, in 1676. Using a telescope, Ole observed the motions of Jupiter and one of its moons, Io. Noting discrepancies in the apparent period of Io's orbit, Rømer calculated that light takes about 22 minutes to traverse the diameter of Earth's orbit.[4] Unfortunately, its size was not known at that time. If Ole had known the diameter of the Earth's orbit, he would have calculated a speed of 227,000,000 m/s.
Another, more accurate, measurement of the speed of light was performed in Europe by Hippolyte Fizeau in 1849. Fizeau directed a beam of light at a mirror several kilometers away. A rotating cog wheel was placed in the path of the light beam as it traveled from the source, to the mirror and then returned to its origin. Fizeau found that at a certain rate of rotation, the beam would pass through one gap in the wheel on the way out and the next gap on the way back. Knowing the distance to the mirror, the number of teeth on the wheel, and the rate of rotation, Fizeau was able to calculate the speed of light as 313,000,000 m/s.
Léon Foucault used an experiment which used rotating mirrors to obtain a value of 298,000,000 m/s in 1862. Albert A. Michelson conducted experiments on the speed of light from 1877 until his death in 1931. He refined Foucault's methods in 1926 using improved rotating mirrors to measure the time it took light to make a round trip from Mt. Wilson to Mt. San Antonio in California. The precise measurements yielded a speed of 299,796,000 m/s.
Two independent teams of physicists were able to bring light to a complete standstill by passing it through a Bose-Einstein Condensate of the element rubidium, one led by Dr. Lene Vestergaard Hau of Harvard University and the Rowland Institute for Science in Cambridge, Mass., and the other by Dr. Ronald L. Walsworth and Dr. Mikhail D. Lukin of the Harvard-Smithsonian Center for Astrophysics, also in Cambridge.
Generally, EM radiation (the designation 'radiation' excludes static electric and magnetic and near fields) is classified by wavelength into radio, microwave, infrared, the visible region we perceive as light, ultraviolet, X-rays and gamma rays.
The behavior of EM radiation depends on its wavelength. Higher frequencies have shorter wavelengths, and lower frequencies have longer wavelengths. When EM radiation interacts with single atoms and molecules, its behavior depends on the amount of energy per quantum it carries.
Refraction is the bending of light rays when passing from one transparent material to another. It is described by Snell's Law:
n_1\sin\theta_1 = n_2\sin\theta_2\ .
where θ1 is the angle between the ray and the normal in the first medium, θ2 is the angle between the ray and the normal in the second medium, and n1 and n2 are the indeces of refraction, n = 1 in a vacuum and n > 1 in a transparent substance.
When a beam of light crosses the boundary between a vacuum and another medium, or between two different media, the wavelength of the light changes, but the frequency remains constant. If the beam of light is not orthogonal (or rather normal) to the boundary, the change in wavelength results in a change in the direction of the beam. This change of direction is known as refraction.
The refractive quality of lenses is frequently used to manipulate light in order to change the apparent size of images. Magnifying glasses, spectacles, contact lenses, microscopes and refracting telescopes are all examples of this manipulation. Light Elementals are able to utilize light rays and visible light to solidify it into a 3-D form, using it as a form of weaponry or shield. They can also use it, if they are very skilled, to create illusions such as invisibility, by changing the course and refraction of surrounding light.
SoundSound is a traveling wave which is an oscillation of pressure transmitted through a solid, liquid, or gas, composed of frequencies within the range of hearing and of a level sufficiently strong to be heard, or the sensation stimulated in organs of hearing by such vibrations.
For humans, hearing is normally limited to frequencies between about 12 Hz and 20,000 Hz (20 kHz)[2], although these limits are not definite. The upper limit generally decreases with age. Other species have a different range of hearing. For example, dogs can perceive vibrations higher than 20 kHz. As a signal perceived by one of the major senses, sound is used by many species for detecting danger, navigation, predation, and communication. Earth's atmosphere, water, and virtually any physical phenomenon, such as fire, rain, wind, surf, or earthquake, produces (and is characterized by) its unique sounds. Many species, such as frogs, birds, marine and terrestrial mammals, have also developed special organs to produce sound. In some species, these have evolved to produce song and speech. Furthermore, humans have developed culture and technology (such as music, telephone and radio) that allows them to generate, record, transmit, and broadcast sound.
The mechanical vibrations that can be interpreted as sound are able to travel through all forms of matter: gases, liquids, solids, and plasmas. The matter that supports the sound is called the medium. Sound cannot travel through vacuum.
Sound is transmitted through gases, plasma, and liquids as longitudinal waves, also called compression waves. Through solids, however, it can be transmitted as both longitudinal and transverse waves. Longitudinal sound waves are waves of alternating pressure deviations from the equilibrium pressure, causing local regions of compression and rarefaction, while transverse waves (in solids) are waves of alternating shear stress at right angle to the direction of propagation.
Matter in the medium is periodically displaced by a sound wave, and thus oscillates. The energy carried by the sound wave converts back and forth between the potential energy of the extra compression (in case of longitudinal waves) or lateral displacement strain (in case of transverse waves) of the matter and the kinetic energy of the oscillations of the medium.
The speed of sound depends on the medium through which the waves are passing, and is often quoted as a fundamental property of the material. In general, the speed of sound is proportional to the square root of the ratio of the elastic modulus (stiffness) of the medium to its density. Those physical properties and the speed of sound change with ambient conditions. For example, the speed of sound in gases depends on temperature. In 20 °C (68 °F) air at the sea level, the speed of sound is approximately 343 m/s (1,230 km/h; 767 mph) using the formula "v = (331 0.6T) m/s". In fresh water, also at 20 °C, the speed of sound is approximately 1,482 m/s (5,335 km/h; 3,315 mph). In steel, the speed of sound is about 5,960 m/s (21,460 km/h; 13,330 mph).[5] The speed of sound is also slightly sensitive (a second-order anharmonic effect) to the sound amplitude, which means that there are nonlinear propagation effects, such as the production of harmonics and mixed tones not present in the original sound (see parametric array).
Sound Elementals utilize sound as a means of attacks or even defense. In this way, they can conjure powerful waves of near solid sound, a barrier of pressurized sound, or even piercing notes of it that are capable of rendering their opponent deaf, unless defended against. The fact that sound is intangible unless it is increased in pressure allows their attacks to often overcome many defenses, but is gradually weakened as it passes through matter.
---
Humans felt that they were a lot weaker than they would like to be, and thus began the experimental process of developing the Elementals. The original jest of creating elementals was to acquire the ability to actually create matter, which was actually thought to be impossible up until that point. Each elemental is able to create or conjure their elemental through the use of formulating it's chemical make-up. This means that so long as there is Oxygen in the air, a Fire elemental is able to produce the proper heat to create fire - without the use of fuel, so long as they are focusing on that fire. The second they lose concentration on the fire, it will disperse without a source of fuel.
Fire Conjuration: Requires both concentration and oxygen; without oxygen, a Fire Elemental is only able to produce mild forms of heat-waves; without concentration, created fire will disperse into the air.
- Heat; Requires nothing but the user to be conscious and have enough energy to concentrate their ability.
- Plasma; Requires a fuel, oxygen, and full concentration.
Water Conjuration: Requires both concentration and oxygen; without oxygen, water will turn into mist and disperse into the air; without concentration, the water will fall limp to the ground.
- Mist; Requires nothing but the user to be conscious and have enough energy to concentrate their ability.
- Ice; Requires oxygen, concentration, and an area in which they are able to formulate it without the interference of heat above room temperature.
Earth Conjuration: Requires both concentration and a form of mineral or soil; without a form of mineral, an Earth Elemental will have no medium from which they may expand rock from.
- Wood; Requires a nearby wood element to utilize as a medium to expand the wood element from and concentration; without concentration the wood will shrivel up and die.
- Other Plant Life; Requires oxygen, concentration, and a form of nearby soil in which they can grow the plant-life from.
Air Conjuration: Requires concentration and at least two forms of gas in the air, this can include oxygen, hydrogen, nitrogen, etc.
- Gliding; Requires nothing but mild concentration.
- Flight; oxygen, concentration, and enough energy.
Electricity Conjuration: Requires the use of both hands, oxygen, and concentration.
- Static Electricity: Requires the use of one hand and concentration.
Shadow Conjuration: Requires a nearby shadow and for some form of visible light to be in the room. This means that if the room is completely dark, you can not solidify a shadow.
Light Conjuration: Requires at least some form of visible light nearby, this could be sunlight, a light bulb, or anything else that gives off electromagnetic radiation, it also requires concentration.
Sound Conjuration: Requires concentration, the use of one's mouth or hands, and some form of space for the sound to travel. Sound can not instantly go through solid materials, it must first gain momentum from traveling through air.
Different Races of Elementals (In addition to their Element):
- Fire Elementals (Red or Orange Skin)
- Water Elementals (Blue, Blue-Green, or Green Skin)
- Earth Elementals (Brown, Dark-Brown, Tan, or Light Tan Skin)
- Wind Elementals (Pale, White, or Caucasion Skin)
- Lightning Elementals (Yellow, Light Blue, or Light Gray Skin)
- Shadow Elementals (Black or Dark Gray Skin)
- Light Elementals (Gold Skin)
- Sound Elementals (Gray, Caucasion, or Silver Skin)